Molecular nanosprings in spider capture-silk threads.

نویسندگان

  • Nathan Becker
  • Emin Oroudjev
  • Stephanie Mutz
  • Jason P Cleveland
  • Paul K Hansma
  • Cheryl Y Hayashi
  • Dmitrii E Makarov
  • Helen G Hansma
چکیده

Spider capture silk is a natural material that outperforms almost any synthetic material in its combination of strength and elasticity. The structure of this remarkable material is still largely unknown, because spider-silk proteins have not been crystallized. Capture silk is the sticky spiral in the webs of orb-weaving spiders. Here we are investigating specifically the capture spiral threads from Araneus, an ecribellate orb-weaving spider. The major protein of these threads is flagelliform protein, a variety of silk fibroin. We present models for molecular and supramolecular structures of flagelliform protein, derived from amino acid sequences, force spectroscopy (molecular pulling) and stretching of bulk capture web. Pulling on molecules in capture-silk fibres from Araneus has revealed rupture peaks due to sacrificial bonds, characteristic of other self-healing biomaterials. The overall force changes are exponential for both capture-silk molecules and intact strands of capture silk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unraveling the mechanical properties of composite silk threads spun by cribellate orb-weaving spiders.

Orb-web weaving spiders depend upon the mechanical performance of capture threads to absorb the energy of flying prey. Most orb-weavers spin wet capture threads with core fibers of flagelliform silk. These threads are extremely compliant and extensible due to the folding of their constituent proteins into molecular nanosprings and hydration by a surrounding coating of aqueous glue. In contrast,...

متن کامل

The common house spider alters the material and mechanical properties of cobweb silk in response to different prey.

Many spiders depend upon webs to capture prey. Web function results from architecture and mechanical performance of the silk. We hypothesized that the common house spider, Achaearanea tepidariorum, would alter the mechanical performance of its cobweb in response to different prey by varying the structural and material properties of its silk. We fed spiders either large, high kinetic energy cric...

متن کامل

Spider orb webs rely on radial threads to absorb prey kinetic energy.

The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank a...

متن کامل

Spider capture silk: performance implications of variation in an exceptional biomaterial.

Spiders and their silk are an excellent system for connecting the properties of biological materials to organismal ecology. Orb-weaving spiders spin sticky capture threads that are moderately strong but exceptionally extensible, resulting in fibers that can absorb remarkable amounts of energy. These tough fibers are thought to be adapted for arresting flying insects. Using tensile testing, we a...

متن کامل

Wind induces variations in spider web geometry and sticky spiral droplet volume.

Trap building by animals is rare because it comes at a substantial cost. Using materials with properties that vary across environments maintains trap functionality. The sticky spiral silks of spider orb webs are used to catch flying prey. Web geometry, accompanied by compensatory changes in silk properties, may change across environments to sustain web functionality. We exposed the spider Cyclo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 2 4  شماره 

صفحات  -

تاریخ انتشار 2003